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Abstract 

 
 A wireless sensor network (WSN) now 

becomes popular in context awareness development 
to distribute critical information and provide 
knowledge services to everyone at anytime and 
anywhere. However, the data transfer in a WSN 
potentially encounters many threats and attacks. 
Hence, particular security schemes are required to 
prevent them. A WSN usually uses low power, low 
performance, and limited resources devices. One of 
the most promising alternatives to public key 
cryptosystems is Elliptic Curve Cryptography 
(ECC), due to it pledges smaller keys size. This 
implies the low cost consumption to calculate 
arithmetic operations in cryptographic schemes and 
protocols. Therefore, ECC would be strongly 
required to be implemented in WSN embedded 
devices with limited resources (i.e., processor speed, 
memory, and storage). In this paper, we present an 
implementation of security system on IEEE802.15.4 
WSN device with the employment of Elliptic Curve 
Digital Signature Algorithm (ECDSA) and Elliptic 
Curve Diffie-Hellman (ECDH) key exchange 
protocol. Our experimental results on Intel Mote2  
showed that the total time for signature generation is 
110 ms, signature verification is 134 ms, and ECDH 
shared key generation is 69 ms on the setting of 160-
bit security level. 
 
Keywords: WSN, ECC, ECDSA, ECDH key exchange, 
embedded device. 
 
1. Introduction 

A sensor in a WSN is simply refer to a device 
that raises an electrical signal that contains a 
valuable information and usually has a property such 
as low cost, low performance, and limited resources 
(i.e., processor speed, memory, and storage) to be 

used for developing context awareness. The main 
goal of WSN is to distribute and deliver critical 
information and knowledge services to everyone at 
anytime and anywhere. A WSN may encompass a 
wide range of area and support a variety of 
applications (e.g., environment monitoring, 
disaster/crisis management, home utilization control, 
telematics, mobile RFID, etc). Besides, sensor 
networks are essentially connected to user networks 
through common use networks, such as Internet or 
other public network connections. Thus, there 
should be many potential threats and attacks in 
transferring information via a WSN. To overcome 
this situation, an effective security system is 
required to address those problems. 

A wireless sensor network (WSN) now becomes 
popular, hence many researchers have taken in 
account this area of interest, such as in 
[2],[4],[5],[6]. They have considered in the research 
both in the system design and the implementation. 

However, the data transfer in a WSN potentially 
encounters many threats and attacks. Hence, 
particular security schemes are required to prevent 
them. A WSN usually uses low power, low 
performance, low processor speed, limited memory 
and storage size, such as embedded devices 
[2],[4],[5]. One of the most promising alternatives to 
public key cryptography (e.g., RSA and ElGamal) is 
Elliptic Curve Cryptography (ECC)[1],[7], due to it 
offers smaller keys size rather than RSA or ElGamal 
for the same level of cryptographic strength. For 
example, the setting of 160-bit in ECC provides the 
same security level with 1024-bit length of RSA or 
ElGamal. This implies that ECC promises the 
requirements of small space and memory in the 
implementation on embedded devices [2],[4]. In 
addition, ECC consumes a low cost calculation of 
arithmetic operations in cryptographic schemes and 
protocols [5]. Therefore, ECC is the best candidate 
and suitable algorithm to be implemented on the 
WSN embedded devices. 

One of small operating systems implemented 
for constructing a secure WSN based on the use of 
ECC is TinyOS [2],[4]. There also has been 
introduced a low cost ECC on the implementation of 
WSN [5], and the construction of secure ECC on 
WSN [6]. In this paper, we present an 
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implementation of security scheme on IEEE802.15.4 
WSN device, namely Intel Mote2 platform [10] with 
the employment of Elliptic Curve Digital Signature 
Algorithm (ECDSA) and Diffie-Hellman (DH) key 
exchange protocol to realize our security system in 
WSN. 

 
2. Security Requirements 

In modern wireless communication systems 
including WSN, the security and efficiency features 
have to be considered. In addition to the common 
networking threats and attacks, especially in WSNs, 
these kind of threats and attacks include: (1) sensor 
node compromise that is caused when sensors in 
WSN are being attacked or compromised or may be 
an attacker inserting illegal sensors to an existing 
system; (2) eavesdropping which is performed by 
monitoring transmissions between nodes; (3) 
compromise or exploration of sensed data; (4) denial 
of service (DoS) attacks which try to block sensors 
and  communications; and (5) malicious use or 
misuse in WSN for illegal purposes. To encounter 
these problems, in this section, we briefly describe 
the security requirements needed by WSN. 
 
2.1 Mutual Authentication 

The situation of illegally nodes to involve in a 
legitimate WSN could be happened in early sensor 
networks [3]. The main goal is to be granted for 
accessing the important sensed data from legal 
nodes or gateways. Hence, it is very important for 
all nodes to authenticate each other or between 
nodes and gateways before sensed data or other 
important information are being exchanged. 
 
2.2 Nonrepudiation of Service 

To satisfy a good WSN design and its 
implementations, it also has to be considered the 
possibility of a node to disclaim the charges of 
sending or receiving sensed data or services. Digital 
signature is one of solutions to meet this security 
requirement and this feature can easily be applied in 
security protocols. 
 
2.3 Confidentiality 

There must be many purposes on WSN 
including business or commercial tendencies. Thus, 
by today’s technology, illegal nodes can easily 
intercept radio signals propagating over the air in 
WSN. As the results, there exists disposing and 
eavesdropping activities. To address this problem, 
all nodes in WSN and gateways must deal with on 
the use of keys to encrypt messages on every 
communication session. Key exchange, key 
agreement, and session keys are an important stage 
of the authentication mechanism between nodes and 
gateways. 
 
2.4 Security Algorithm Selection 

In the introduction section has already been 
mentioned that WSN comprises many sensors with 
usually adhere limited resources. For cryptosystem 
protocols, not only security is the most important 
concern, but also practical implementation should 
also be considered. Hence, a design and selection 
security algorithm to produce a very efficient 
cryptosystem protocol can be implemented in WSN. 
In addition, there are many exchanged messages 
involving in this protocol and it should consume 
amount memory, thus it is a challenging to design an 
efficient protocol. 
  
3. Elliptic Curve over Fp and Complex 
Multiplication Method 

In this section, we briefly describe the 
fundamental of Elliptic Curves over Fp and the 
method of Complex Multiplication (CM). The detail 
explanation about elliptic curves and CM method can 
be referred in [1] and [7].  

Let denote p > 3 be an odd prime number, a 
prime field Fp which consists of a set of integer 
numbers {0, 1, …, p-1} and also the operations of 
arithmetic, such as addition and multiplication with 
modulo by p. Let also define an elliptic curve E(Fp) 
over Fp is a set of point P which has coefficients (x, 
y) where x, y∈Fp and must fulfill the following 
equation:  
y2 = x3 + ax + b (mod p)   (1) 
 

where a, b∈Fp satisfies 4a3 + 27b2 ≠ 0. This set of 
point along with the point at infinity, O. The point O 
plays a role of identity component to perform special 
arithmetic operation and defines an Abelian Group 
called Elliptic Curve Group. The multiplication 
operation over E(Fp) is done based on addition 
operation as follows: 
Q = k × P = P + P + … + P  (2) 

 
 
where k∈Z, and Z is integer numbers. In addition, 
let denote Q and P are points on E(Fp). The point P 
= (x, y) has an order m, which is the smallest integer 
k that satisfies: k × P = O. The order m of an elliptic 
curve E(Fp) is the number of points on E(Fp), where 
k ≤ m. The discriminant ∆ of E(Fp) and j-invariant 
are defined by: 
∆ = -16(4a3 + 27b2), where j = -1728(4a)2/∆  (3) 

 
On the given a j-invariant j0∈Fp and j0 ≠ 0.1728. 
Then, an E(Fp) can be easily generated by set of a = 
3k mod p and b = 2k mod p, where k = j0/(1728-j0). 
The second elliptic curve called twist from the 
previous constructed elliptic curve can be defined as 
follows: 
y2 = x3 + ac2x + bc3   (4) 
 

where c is any quadratic non-residue in Fp. After 
completing the construction of two elliptic curves 

k 
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(equations (1) and (4)), the E(Fp) with an order m 
ensures the intractability of solving the problem of 
Discrete Logarithm Problem (DLP) on the elliptic 
curve group when constructing an elliptic curve 
based cryptosystem. 

To construct elliptic curve by using CM method, 
firstly we need to select a suitable order m which can 
be defined by calculating j-invariant. Then, the CM 
method is started from the selecting of a prime p and 
finding the smallest D which is a discriminant value 
of CM method on p. Let denote two integer values, u 
and v that satisfies the following equations: 
4p = u2 + Dv2 and m = p + 1 ± u.  (5) 

 
Then, it must be checked whether p + 1 – u or p + 1 + 
u are suitable orders for constructing elliptic curve. 
Otherwise, such procedure must be repeated, if not 
the next step is based on the value of D to create 
Hilbert polynomials [1],[3] and find their roots. The 
root is created from j-invariant when generating 
elliptic curve and its twist or the second curve. Then 
Lagrange method is used to select a suitable one of 
the two elliptic curves by picking randomly point P 
from each elliptic curve randomly until the point 
fulfills equation: m × P ≠ O is found. Then, another 
curve can be judged as the right one. 

Computationally, CM method is costly when 
calculating Hilbert polynomials, due to a lot of 
coefficients, but it produces a high precision floating 
point and complex arithmetic operations. To address 
this problem, but still uses the advantage property of 
Hilbert polynomials, CM method adopts Weber 
polynomials in addition of Hilbert polynomials. This 
phenomenon is described detail in [1]. 
 

3.1 Elliptic Curve Digital Signature Algorithm 
(ECDSA) 
An elliptic curve E(Fp) over Galois Field GF(p) with 
large of order p and a point P of large order are 
selected and made them public to all nodes. Then, a 
pair of public key and private key are generated. 
Furthermore, for each transaction, the signature 
generation and verification are implemented. We 
briefly outline the ECDSA as follows: 
 
ECDSA key generator: the Node A performs the 
following steps: 
I. Select a random d ∈[2, p-2]. 
II. Compute Q = d × P 
III. Public key (pk) and secret key (sk) for Node A is 

a couple of (E(Fp), P, n, Q) and d, respectively. 
 
ECDSA signature generation: Node A signs a 
message M by considering the following steps: 
I. Select a random integer k ∈[2, p-2]. 
II. Compute k × P = (x1, y1) and r = x1 mod p. 

A) If only if x1, yI ∈ Fp. 
B) If r = 0, then return to the step I. 

III. Compute k-1 mod p. 
IV. Compute s = k-1(H(M) + d×r) mod p. 

A) H is a hash algorithm 
B) If s = 0, then return to the step I. 

V. Signature of message M is a pair of integer (r, 
s). 

 
ECDSA signature verification: Node B verifies 
Node A’s signature (r, s) for a message M by 
applying the following steps: 
I. Compute c = s-1 mod p and H(M). 
II. Compute u1 = H(M) ×c mod p and u2 = r×c mod 

p. 
III. Compute u1 × P + u2 × Q = (x0, y0) and v = x0 

mod p. 
IV. Signature can be said valid if only if v = r, 

otherwise it is invalid. 
 

3.2 Elliptic Curve Diffie-Hellman (ECDH) Key 
Agreement 
Let assume that Node A wants to establish a shared 
key with Node B. At first, two parties initiate and 
deal with the global parameter which is a couple of 
(p, a, b, G) in the prime number Fp. Also, each node 
must have a key pair suitable for elliptic curve E(Fp) 
which consists of a private key d, namely a selected 
random number in the interval [1, p−1] and a public 
key Q (where Q = d×G and G is a base point of 
elliptic curve). Let Node A's key pair be (dA, QA) and 
node B's key pair be (dB, QB). Each node must have 
the other node's public key, thus there should be a 
key exchange mechanism between them. Upon 
receiving Node B’s public key, Node A computes a 
shared key k = dA×QB. Similarly, Node B computes k 
= dB×QA. The calculated shared key k by both nodes 
is equal, because dA×QB = dA×dB×G = dB×dA×G = 
dB×QA. The protocol is secure because nothing is 
disclosed (except for the public keys), and no node 
can derive the private key of the other nodes, unless 
the Elliptic Curve Discrete Logarithm Problem 
(ECDLP) was solved. 
 

4. Implementation 
In this section, we describe our implementation 

of digital signature and key agreement on Intel Mote2 
and Laptop PC. To show the effectiveness of our 
system implementation, we compare the 
implementation on the Intel Mote2 and on the Laptop 
PC. In addition, we also compare the experimental 
results of using ECDSA technique and RSA-based 
one. 

 
4.1 The Architecture of Intel Mote2 IEEE802.15.4 
WSN 

The Intel Mote2 is a sensor device which has a 
set of features especially for constructing a WSN and 
its supporting applications, such as industrial 
vibration, structural monitoring, acoustic and visual 
monitoring. The main processor with PXA271 
XScale platform runs up to 416Mhz. It is also 
equipped with IEEE802.15.4 wireless sensor 
network. It also exposes a basic sensor board. Intel 
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Mote2 has internal 256kB SRAM, SDRAM of 
30Mbytes and flash memory of 30Mbytes. The 
PXA271 XScale processor uses the SRAM for both 
instruction and data which is targeted for mobile ad-
hoc routing and bridging functionalities. All working 
functions are supported by the Openembedded Linux 
operating system resides in the flash memory. This 
operating system is licensed under the GPL that 
includes a standard C library, many applications 
supported, libraries, tools, and root file systems. 
Table 1 shows the detail specifications of Intel Mote2 
device used in this implementation. For detail 
specifications can be found in [10]. 

 
Table 1. Intel Mote2 specifications used in the 

experimental. 

Hardware 
PXA271 XScale processor 416MHz, 256kB 

SRAM, 30MB SDRAM, 30MB flash memory, 
IEEE802.15.4. 

Software Openembedded Linux O/S kernel-2.6.29, 
gmplib-5.0.5, arm-linux-gcc-3.4.3. 

 
4.2 ECDSA and ECDH Implementation on Intel 
Mote2 

We embed the CM method variant which has 
been presented in [1] to the Intel Mote2. At first, we 
determine a suitable elliptic curve parameters a and b 
to construct an elliptic curve. Furthermore, we 
perform the following basic steps: 
I. Choose a suitable discriminant value D to find out 

Hilbert and Weber polynomials. 
II. Pick randomly a prime number p. This number is 

selected if and only if the equation 4p = u2 + Dv2 
can be solved (find the two integer values u and 
v). Otherwise, repeat to select other p. 

III. Pick the order of elliptic curve m if one of either 
this equation m = p + 1 – u or m = p + 1 + u is 
satisfied. Otherwise, repeat step I. In addition, m 
also has to be satisfied the following 
requirements: 

A) m ≠ p. 
B) ∀k, 1 ≤ k ≤ 20, pk ≢ 1 (mod p). 
C) m is a big number (at least 2160). 

IV. Based on the first elliptic curve and the twist 
elliptic curve, compute the roots of Weber 
polynomials by using j-invariants. 

V. Select one from the two elliptic curves that 
satisfies equation mP = O. P is selected 
repeatedly until one of P on each elliptic curve 
fulfills mP ≠ O. 

 
We adopt ECC-LIB [8] and GMP [9] libraries 

in our implementation, due to the libraries provide 
high precision calculations both in integer and 
floating point arithmetic operations. As an embedded 
device, Intel Mote2 also has a limited memory, thus 
adopting the features in ECC-LIB and GMP libraries 
for constructing CM method based elliptic curve is 
suitable for Intel Mote2. 
 

4.3 ECDH Key Agreement Protocol 
Again ECC-LIB and GMP libraries are used to 

construct the implementation of ECDH key 
agreement protocol. Figure 1 shows the mechanism 
of implemented ECDH protocol in our secure WSN 
system. 

 Figure 1. Proposed ECDH key agreement protocol. 
 
Figure 1 demonstrates a key agreement protocol 
between Node A and Node B. In advance, two nodes 
have dealt with the global parameter (p, a, b, G), 
where a and b are elliptic curve coefficients, prime 
number p, and G is the base point which consists of 
coordinate values to construct an elliptic curve. The 
flow of this protocol is as follows: 
I. Upon receiving a message from Node A that 

includes identity of Node A IDA, timestamp TS1, 
and Node A’s public key QA = dA×G (where dA 
represents Node A’s private key), Node B 
generates a random Nonce, his public key QB = 
dB×G (dB is Node B’s private key), his timestamp 
TS2, and LifetimeB = TS1-TS2. Here, the used of 
Nonce, timestamps, and Lifetime is to prevent 
reply attacks. Furthermore, he computes a shared 
key KAB = dB×QA and signs the message which 
includes Nonce, TS2, LifetimeB, and IDB by using 
his private key. Then, the shared key KAB is used 
for encrypting the message and sends the encoded 
message along with signature SigB and QB to 
Node A. 

II. Node A computes a shared key KAB = dA×QB, 
decrypts the encoded message into plaintext 
message which consist of Nonce, TS2, LifetimeB, 
and IDB information, such that he can verify 
signature SigB. Furthermore, he checks whether 
LifetimeB = TS1-TS2 or not. The process will be 
continued to the next step if the equation holds. 
Otherwise, a reply attack may occur and the 
process is aborted. Then, Node A prepares a new 
timestamp TS3, calculates LifetimeA = TS2-TS3, 
encrypts them together with Nonce received from 
Node B by using his shared key KAB, and signs the 
message into signature SigA. Then, he responds 
Node B by sending a couple of (E(KAB, [Nonce || 
TS3 || LifetimeA]), SigA) to Node B. Where E 
denotes an encryption algorithm and || is the 
concatenation of string in the message. 
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III. Upon receiving a response message from Node A, 
by using his own KAB, Node B decrypts the 
message and proves that LifetimeA = TS2-TS3. SigA 
is verified successfully if only if the equation 
holds and the received Nonce is equal to his own 
Nonce. Otherwise, a reply attack may occur and 
the process is aborted. Furthermore, Node B 
prepares a new timestamp TS4, calculates a new 
lifetime LifetimeB* = TS3-TS4, and defines a 
confirmation message Confirm for accepting or 
rejecting the connection. He signs the Confirm 
together with TS4 and LifetimeB* into SigB*. Then, 
he sends SigB* along with encoded message to 
Node A. 

IV. Finally, Node A verifies received message from 
Node B and decrypts it. He ensures that LifetimeB* 
= TS3-TS4 and the Confirm message is accept 
confirmation to establish a connection. 

 
4.4 Data Confidentiality Approach 
Data confidentiality in our implementation is 
achieved by encrypting every message exchanged in 
every communication session by sender Node. On the 
other hand, the encoded message is decrypted into 
original message by recipient Node. This approach is 
implemented both in key exchange and data 
exchange phases. The detail of our implementation is 
briefly described by the following steps of encryption 
scheme for a message M. 
I. Generate a one-time key pair (R, c) from the 

global EC parameters and let R as a point on the 
curve. 

II. Pick the x component of K = c×B as a string X, 
where B is the public key of recipient. 

III. Generate a mask Y. This is the same number of 
bytes as message M that uses the string X with the 
Mask Generation Function (MGF). 

IV. The final step is concatenation of the point R with 
the encrypted message, whereas the encrypted 
message is the result of XOR between the mask 
and the message. 

V. The process of message decryption to retrieve 
original message is performed by generating the 
mask and XOR with the encrypted message. 

 
5. Experimental Results 

In this section, we explain the experimental 
results of our implementation. At first experiment, we 
test the ECDSA and ECDH with elliptic curves over 
Fp and CM method on Laptop PC with the 
specifications: AMD Dual-Core processor 1.6GHz, 
2GB RAM running on Ubuntu Linux kernel-2.6.35 
with gcc-4.4 GNU C Compiler and GMP-5.0.5 
Library. 
 
 
 
 

Table 2. Comparisons of the total processing time in 
RSA-based and ECC-based Digital Signature Algorithm 

(DSA). 

 RSA 
ECC 

RSA 
ECC 

RSA 
ECC 

RSA 
ECC 

Bit length 1024 
160 

1536 
192 

2048 
224 

3072 
256 

Signature 
generation 
time (ms) 

1,182.93 
6.81 

3,663.65 
8.19 

7,076.35 
11.45 

17,223.12 
13.87 

Signature 
verification 
time (ms) 

582.69 
10.64 

1,738.40 
16.36 

3,451.21 
17.67 

9,270.83 
21.29 

 
Table 2 shows the total time comparisons of 

signature generation and verification between RSA-
based and ECC-based digital signature algorithm. 
The total time of signature generation varies from 7 
ms to 14 ms, and signature verification varies from 
11 ms to 21 ms in ECC-based algorithm. Meanwhile, 
the total time of signature generation varies from a 
second to 17 seconds, and verification time varies 
from 580 ms to 9 seconds in RSA-based one. Here, 
the security level of 160-bit, 224-bit, and 256-bit 
length in ECC equal to 1024-bit, 2048-bit, and 3072-
bit length in RSA, respectively. This implies that the 
cost of computation time in elliptic curve technique is 
much more efficient than in RSA-based one. 

 
Table 3. Comparisons of signature size in RSA-based 

DSA and ECDSA. 
 RSA-DSA 

ECDSA 
RSA-DSA 

ECDSA 
RSA-DSA 

ECDSA 
RSA-DSA 

ECDSA 

Bit length 1024 
160 

1536 
192 

2048 
224 

3072 
256 

Signature 
size (Bytes) 

9,868 
96 

14,799 
113 

19,715 
134 

24,482 
146 

 

 
Figure 2. Total processing times on Intel Mote2. 

 
We also compared the overhead of RSA-based 

DSA and ECDSA algorithm in term of signature size. 
The comparison of signature size is shown in Table 
3. For the bit-length of security level from 160-bit to 
256-bit in ECDSA, the signature size varies from 96 
to 146 Bytes only. On the other hand, RSA-based 
DSA suffers from a big size of signature. It varies 
from 10 to 24Kbytes in the variety of security level 
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from 1024 to 3072 bit length. This good feature of 
ECDSA can efficiently be implemented into low end 
performance devices, such as embedded devices 
including Intel Mote2. 

 
Table 4. Total processing time of message encryption 

and message decryption. 
Bit length 160 192 224 256 
Message encryption 
time (ms) 1.605 1.608 1.610 1.607 

Message decryption 
time (ms) 1.098 1.103 1.101 1.099 

 
Based on the reality that ECC is much more 

efficient than RSA, we have ported ECDSA and 
ECDH schemes into Intel Mote2 embedded device. 
Figure 2 shows the total time of signature generation, 
signature verification, and ECDH shared key 
generation. We vary the bit length of cryptosystem 
from 160-bit to 256-bit in our measurement. The total 
processing time of signature generation varies from 
110 ms to 152 ms. Whereas, the total time of 
signature verification varies from 134 ms to 173 ms, 
and total time of ECDH shared key generation is 
relatively constant at 70 ms. In addition, our 
approach to guarantee data confidentiality, we 
implemented message encryption and message 
decryption. Table 4 shows the total processing time 
of message encryption and decryption algorithm. The 
total time of encryption and decryption processes are 
relatively constant for any bit-length of security level. 
They are only 1.6 ms and 1.1 ms for message 
encryption and decryption, respectively. 
 

6. Security Issues 
The proposed ECDH protocol is secure because 
nothing is disclosed (except for the public keys), and 
no node can derive the private key of the other nodes, 
unless the Elliptic Curve Discrete Logarithm Problem 
(ECDLP) was compromised. This is because all 
nodes are only allowed to have public keys of other 
nodes. All participant nodes hide their private keys 
by embedding them into shared key KAB. Let consider 
to the following equation: 

 
KAB = dA×QB = dA×dB×G = dB×dA×G = dB×QA     (6) 
  

We introduced the use of timestamps and packet 
lifetime in every session of communication or 
transaction between two nodes, and the use of 
random nonce to prevent a kind of reply attacks by 
un-authorized nodes. This protocol security is also 
supported by the use of digital signatures to provide a 
mechanism of mutual authentication scheme. We also 
encrypted every message exchanged in every 
communication session to guarantee the data 
confidentiality. 

 

7. Conclusion 
In this paper we have presented an 

implementation of elliptic curve digital signature and 
key agreement on an IEEE802.15.4 WSN device. 
The experimental results show the practicality of our 
secure WSN system. The total time of signature 
generation, verification, and ECDH shared key 
generation consume low cost of computation time. 
They only consume computation time within 500 ms 
with the overhead of signature size within 200 Bytes. 
Our future works include the implementation of 
secure data exchange over WSN between nodes and 
between nodes and the gateway; and the 
consideration of multi-hops communications among 
nodes over WSN. 
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