
The 14th Industrial Electronics Seminar 2012 (IES 2012)
Electronic Engineering Polytechnic Institute of Surabaya (EEPIS), Indonesia, October 24, 2012

 ISBN: 978-602-9494-28-0 115

An Implementation of Digital Signature and Key Agreement on
IEEE802.15.4 WSN Embedded Device

Amang Sudarsono and Mike Yuliana
Division of Telecommunication Engineering, Dept. of Electrical Engineering,

Electronic Engineering Polytechnic Institute of Surabaya (EEPIS), Surabaya, Indonesia.
EEPIS Campus, Jalan Raya ITS Sukolilo, Surabaya 60111

Tel: +62(31) 594 7280; Fax: +62(31) 594 6114
Email : amang@eepis-its.edu, mieke@eepis-its.edu

Abstract

 A wireless sensor network (WSN) now

becomes popular in context awareness development
to distribute critical information and provide
knowledge services to everyone at anytime and
anywhere. However, the data transfer in a WSN
potentially encounters many threats and attacks.
Hence, particular security schemes are required to
prevent them. A WSN usually uses low power, low
performance, and limited resources devices. One of
the most promising alternatives to public key
cryptosystems is Elliptic Curve Cryptography
(ECC), due to it pledges smaller keys size. This
implies the low cost consumption to calculate
arithmetic operations in cryptographic schemes and
protocols. Therefore, ECC would be strongly
required to be implemented in WSN embedded
devices with limited resources (i.e., processor speed,
memory, and storage). In this paper, we present an
implementation of security system on IEEE802.15.4
WSN device with the employment of Elliptic Curve
Digital Signature Algorithm (ECDSA) and Elliptic
Curve Diffie-Hellman (ECDH) key exchange
protocol. Our experimental results on Intel Mote2
showed that the total time for signature generation is
110 ms, signature verification is 134 ms, and ECDH
shared key generation is 69 ms on the setting of 160-
bit security level.

Keywords: WSN, ECC, ECDSA, ECDH key exchange,
embedded device.

1. Introduction

A sensor in a WSN is simply refer to a device
that raises an electrical signal that contains a
valuable information and usually has a property such
as low cost, low performance, and limited resources
(i.e., processor speed, memory, and storage) to be

used for developing context awareness. The main
goal of WSN is to distribute and deliver critical
information and knowledge services to everyone at
anytime and anywhere. A WSN may encompass a
wide range of area and support a variety of
applications (e.g., environment monitoring,
disaster/crisis management, home utilization control,
telematics, mobile RFID, etc). Besides, sensor
networks are essentially connected to user networks
through common use networks, such as Internet or
other public network connections. Thus, there
should be many potential threats and attacks in
transferring information via a WSN. To overcome
this situation, an effective security system is
required to address those problems.

A wireless sensor network (WSN) now becomes
popular, hence many researchers have taken in
account this area of interest, such as in
[2],[4],[5],[6]. They have considered in the research
both in the system design and the implementation.

However, the data transfer in a WSN potentially
encounters many threats and attacks. Hence,
particular security schemes are required to prevent
them. A WSN usually uses low power, low
performance, low processor speed, limited memory
and storage size, such as embedded devices
[2],[4],[5]. One of the most promising alternatives to
public key cryptography (e.g., RSA and ElGamal) is
Elliptic Curve Cryptography (ECC)[1],[7], due to it
offers smaller keys size rather than RSA or ElGamal
for the same level of cryptographic strength. For
example, the setting of 160-bit in ECC provides the
same security level with 1024-bit length of RSA or
ElGamal. This implies that ECC promises the
requirements of small space and memory in the
implementation on embedded devices [2],[4]. In
addition, ECC consumes a low cost calculation of
arithmetic operations in cryptographic schemes and
protocols [5]. Therefore, ECC is the best candidate
and suitable algorithm to be implemented on the
WSN embedded devices.

One of small operating systems implemented
for constructing a secure WSN based on the use of
ECC is TinyOS [2],[4]. There also has been
introduced a low cost ECC on the implementation of
WSN [5], and the construction of secure ECC on
WSN [6]. In this paper, we present an

Communication and Network Systems, Technologies and Applications

 116

implementation of security scheme on IEEE802.15.4
WSN device, namely Intel Mote2 platform [10] with
the employment of Elliptic Curve Digital Signature
Algorithm (ECDSA) and Diffie-Hellman (DH) key
exchange protocol to realize our security system in
WSN.

2. Security Requirements

In modern wireless communication systems
including WSN, the security and efficiency features
have to be considered. In addition to the common
networking threats and attacks, especially in WSNs,
these kind of threats and attacks include: (1) sensor
node compromise that is caused when sensors in
WSN are being attacked or compromised or may be
an attacker inserting illegal sensors to an existing
system; (2) eavesdropping which is performed by
monitoring transmissions between nodes; (3)
compromise or exploration of sensed data; (4) denial
of service (DoS) attacks which try to block sensors
and communications; and (5) malicious use or
misuse in WSN for illegal purposes. To encounter
these problems, in this section, we briefly describe
the security requirements needed by WSN.

2.1 Mutual Authentication

The situation of illegally nodes to involve in a
legitimate WSN could be happened in early sensor
networks [3]. The main goal is to be granted for
accessing the important sensed data from legal
nodes or gateways. Hence, it is very important for
all nodes to authenticate each other or between
nodes and gateways before sensed data or other
important information are being exchanged.

2.2 Nonrepudiation of Service

To satisfy a good WSN design and its
implementations, it also has to be considered the
possibility of a node to disclaim the charges of
sending or receiving sensed data or services. Digital
signature is one of solutions to meet this security
requirement and this feature can easily be applied in
security protocols.

2.3 Confidentiality

There must be many purposes on WSN
including business or commercial tendencies. Thus,
by today’s technology, illegal nodes can easily
intercept radio signals propagating over the air in
WSN. As the results, there exists disposing and
eavesdropping activities. To address this problem,
all nodes in WSN and gateways must deal with on
the use of keys to encrypt messages on every
communication session. Key exchange, key
agreement, and session keys are an important stage
of the authentication mechanism between nodes and
gateways.

2.4 Security Algorithm Selection

In the introduction section has already been
mentioned that WSN comprises many sensors with
usually adhere limited resources. For cryptosystem
protocols, not only security is the most important
concern, but also practical implementation should
also be considered. Hence, a design and selection
security algorithm to produce a very efficient
cryptosystem protocol can be implemented in WSN.
In addition, there are many exchanged messages
involving in this protocol and it should consume
amount memory, thus it is a challenging to design an
efficient protocol.

3. Elliptic Curve over Fp and Complex
Multiplication Method

In this section, we briefly describe the
fundamental of Elliptic Curves over Fp and the
method of Complex Multiplication (CM). The detail
explanation about elliptic curves and CM method can
be referred in [1] and [7].

Let denote p > 3 be an odd prime number, a
prime field Fp which consists of a set of integer
numbers {0, 1, …, p-1} and also the operations of
arithmetic, such as addition and multiplication with
modulo by p. Let also define an elliptic curve E(Fp)
over Fp is a set of point P which has coefficients (x,
y) where x, y∈Fp and must fulfill the following
equation:
y2 = x3 + ax + b (mod p) (1)

where a, b∈Fp satisfies 4a3 + 27b2 ≠ 0. This set of
point along with the point at infinity, O. The point O
plays a role of identity component to perform special
arithmetic operation and defines an Abelian Group
called Elliptic Curve Group. The multiplication
operation over E(Fp) is done based on addition
operation as follows:
Q = k × P = P + P + … + P (2)

where k∈Z, and Z is integer numbers. In addition,
let denote Q and P are points on E(Fp). The point P
= (x, y) has an order m, which is the smallest integer
k that satisfies: k × P = O. The order m of an elliptic
curve E(Fp) is the number of points on E(Fp), where
k ≤ m. The discriminant ∆ of E(Fp) and j-invariant
are defined by:
∆ = -16(4a3 + 27b2), where j = -1728(4a)2/∆ (3)

On the given a j-invariant j0∈Fp and j0 ≠ 0.1728.
Then, an E(Fp) can be easily generated by set of a =
3k mod p and b = 2k mod p, where k = j0/(1728-j0).
The second elliptic curve called twist from the
previous constructed elliptic curve can be defined as
follows:
y2 = x3 + ac2x + bc3 (4)

where c is any quadratic non-residue in Fp. After
completing the construction of two elliptic curves

k

Communication and Network Systems, Technologies and Applications

 117

(equations (1) and (4)), the E(Fp) with an order m
ensures the intractability of solving the problem of
Discrete Logarithm Problem (DLP) on the elliptic
curve group when constructing an elliptic curve
based cryptosystem.

To construct elliptic curve by using CM method,
firstly we need to select a suitable order m which can
be defined by calculating j-invariant. Then, the CM
method is started from the selecting of a prime p and
finding the smallest D which is a discriminant value
of CM method on p. Let denote two integer values, u
and v that satisfies the following equations:
4p = u2 + Dv2 and m = p + 1 ± u. (5)

Then, it must be checked whether p + 1 – u or p + 1 +
u are suitable orders for constructing elliptic curve.
Otherwise, such procedure must be repeated, if not
the next step is based on the value of D to create
Hilbert polynomials [1],[3] and find their roots. The
root is created from j-invariant when generating
elliptic curve and its twist or the second curve. Then
Lagrange method is used to select a suitable one of
the two elliptic curves by picking randomly point P
from each elliptic curve randomly until the point
fulfills equation: m × P ≠ O is found. Then, another
curve can be judged as the right one.

Computationally, CM method is costly when
calculating Hilbert polynomials, due to a lot of
coefficients, but it produces a high precision floating
point and complex arithmetic operations. To address
this problem, but still uses the advantage property of
Hilbert polynomials, CM method adopts Weber
polynomials in addition of Hilbert polynomials. This
phenomenon is described detail in [1].

3.1 Elliptic Curve Digital Signature Algorithm
(ECDSA)
An elliptic curve E(Fp) over Galois Field GF(p) with
large of order p and a point P of large order are
selected and made them public to all nodes. Then, a
pair of public key and private key are generated.
Furthermore, for each transaction, the signature
generation and verification are implemented. We
briefly outline the ECDSA as follows:

ECDSA key generator: the Node A performs the
following steps:
I. Select a random d ∈[2, p-2].
II. Compute Q = d × P
III. Public key (pk) and secret key (sk) for Node A is

a couple of (E(Fp), P, n, Q) and d, respectively.

ECDSA signature generation: Node A signs a
message M by considering the following steps:
I. Select a random integer k ∈[2, p-2].
II. Compute k × P = (x1, y1) and r = x1 mod p.

A) If only if x1, yI ∈ Fp.
B) If r = 0, then return to the step I.

III. Compute k-1 mod p.
IV. Compute s = k-1(H(M) + d×r) mod p.

A) H is a hash algorithm
B) If s = 0, then return to the step I.

V. Signature of message M is a pair of integer (r,
s).

ECDSA signature verification: Node B verifies
Node A’s signature (r, s) for a message M by
applying the following steps:
I. Compute c = s-1 mod p and H(M).
II. Compute u1 = H(M) ×c mod p and u2 = r×c mod

p.
III. Compute u1 × P + u2 × Q = (x0, y0) and v = x0

mod p.
IV. Signature can be said valid if only if v = r,

otherwise it is invalid.

3.2 Elliptic Curve Diffie-Hellman (ECDH) Key
Agreement
Let assume that Node A wants to establish a shared
key with Node B. At first, two parties initiate and
deal with the global parameter which is a couple of
(p, a, b, G) in the prime number Fp. Also, each node
must have a key pair suitable for elliptic curve E(Fp)
which consists of a private key d, namely a selected
random number in the interval [1, p−1] and a public
key Q (where Q = d×G and G is a base point of
elliptic curve). Let Node A's key pair be (dA, QA) and
node B's key pair be (dB, QB). Each node must have
the other node's public key, thus there should be a
key exchange mechanism between them. Upon
receiving Node B’s public key, Node A computes a
shared key k = dA×QB. Similarly, Node B computes k
= dB×QA. The calculated shared key k by both nodes
is equal, because dA×QB = dA×dB×G = dB×dA×G =
dB×QA. The protocol is secure because nothing is
disclosed (except for the public keys), and no node
can derive the private key of the other nodes, unless
the Elliptic Curve Discrete Logarithm Problem
(ECDLP) was solved.

4. Implementation
In this section, we describe our implementation

of digital signature and key agreement on Intel Mote2
and Laptop PC. To show the effectiveness of our
system implementation, we compare the
implementation on the Intel Mote2 and on the Laptop
PC. In addition, we also compare the experimental
results of using ECDSA technique and RSA-based
one.

4.1 The Architecture of Intel Mote2 IEEE802.15.4
WSN

The Intel Mote2 is a sensor device which has a
set of features especially for constructing a WSN and
its supporting applications, such as industrial
vibration, structural monitoring, acoustic and visual
monitoring. The main processor with PXA271
XScale platform runs up to 416Mhz. It is also
equipped with IEEE802.15.4 wireless sensor
network. It also exposes a basic sensor board. Intel

Communication and Network Systems, Technologies and Applications

 118

Mote2 has internal 256kB SRAM, SDRAM of
30Mbytes and flash memory of 30Mbytes. The
PXA271 XScale processor uses the SRAM for both
instruction and data which is targeted for mobile ad-
hoc routing and bridging functionalities. All working
functions are supported by the Openembedded Linux
operating system resides in the flash memory. This
operating system is licensed under the GPL that
includes a standard C library, many applications
supported, libraries, tools, and root file systems.
Table 1 shows the detail specifications of Intel Mote2
device used in this implementation. For detail
specifications can be found in [10].

Table 1. Intel Mote2 specifications used in the

experimental.

Hardware
PXA271 XScale processor 416MHz, 256kB

SRAM, 30MB SDRAM, 30MB flash memory,
IEEE802.15.4.

Software Openembedded Linux O/S kernel-2.6.29,
gmplib-5.0.5, arm-linux-gcc-3.4.3.

4.2 ECDSA and ECDH Implementation on Intel
Mote2

We embed the CM method variant which has
been presented in [1] to the Intel Mote2. At first, we
determine a suitable elliptic curve parameters a and b
to construct an elliptic curve. Furthermore, we
perform the following basic steps:
I. Choose a suitable discriminant value D to find out

Hilbert and Weber polynomials.
II. Pick randomly a prime number p. This number is

selected if and only if the equation 4p = u2 + Dv2
can be solved (find the two integer values u and
v). Otherwise, repeat to select other p.

III. Pick the order of elliptic curve m if one of either
this equation m = p + 1 – u or m = p + 1 + u is
satisfied. Otherwise, repeat step I. In addition, m
also has to be satisfied the following
requirements:

A) m ≠ p.
B) ∀k, 1 ≤ k ≤ 20, pk ≢ 1 (mod p).
C) m is a big number (at least 2160).

IV. Based on the first elliptic curve and the twist
elliptic curve, compute the roots of Weber
polynomials by using j-invariants.

V. Select one from the two elliptic curves that
satisfies equation mP = O. P is selected
repeatedly until one of P on each elliptic curve
fulfills mP ≠ O.

We adopt ECC-LIB [8] and GMP [9] libraries

in our implementation, due to the libraries provide
high precision calculations both in integer and
floating point arithmetic operations. As an embedded
device, Intel Mote2 also has a limited memory, thus
adopting the features in ECC-LIB and GMP libraries
for constructing CM method based elliptic curve is
suitable for Intel Mote2.

4.3 ECDH Key Agreement Protocol
Again ECC-LIB and GMP libraries are used to

construct the implementation of ECDH key
agreement protocol. Figure 1 shows the mechanism
of implemented ECDH protocol in our secure WSN
system.

 Figure 1. Proposed ECDH key agreement protocol.

Figure 1 demonstrates a key agreement protocol
between Node A and Node B. In advance, two nodes
have dealt with the global parameter (p, a, b, G),
where a and b are elliptic curve coefficients, prime
number p, and G is the base point which consists of
coordinate values to construct an elliptic curve. The
flow of this protocol is as follows:
I. Upon receiving a message from Node A that

includes identity of Node A IDA, timestamp TS1,
and Node A’s public key QA = dA×G (where dA
represents Node A’s private key), Node B
generates a random Nonce, his public key QB =
dB×G (dB is Node B’s private key), his timestamp
TS2, and LifetimeB = TS1-TS2. Here, the used of
Nonce, timestamps, and Lifetime is to prevent
reply attacks. Furthermore, he computes a shared
key KAB = dB×QA and signs the message which
includes Nonce, TS2, LifetimeB, and IDB by using
his private key. Then, the shared key KAB is used
for encrypting the message and sends the encoded
message along with signature SigB and QB to
Node A.

II. Node A computes a shared key KAB = dA×QB,
decrypts the encoded message into plaintext
message which consist of Nonce, TS2, LifetimeB,
and IDB information, such that he can verify
signature SigB. Furthermore, he checks whether
LifetimeB = TS1-TS2 or not. The process will be
continued to the next step if the equation holds.
Otherwise, a reply attack may occur and the
process is aborted. Then, Node A prepares a new
timestamp TS3, calculates LifetimeA = TS2-TS3,
encrypts them together with Nonce received from
Node B by using his shared key KAB, and signs the
message into signature SigA. Then, he responds
Node B by sending a couple of (E(KAB, [Nonce ||
TS3 || LifetimeA]), SigA) to Node B. Where E
denotes an encryption algorithm and || is the
concatenation of string in the message.

Communication and Network Systems, Technologies and Applications

 119

III. Upon receiving a response message from Node A,
by using his own KAB, Node B decrypts the
message and proves that LifetimeA = TS2-TS3. SigA
is verified successfully if only if the equation
holds and the received Nonce is equal to his own
Nonce. Otherwise, a reply attack may occur and
the process is aborted. Furthermore, Node B
prepares a new timestamp TS4, calculates a new
lifetime LifetimeB* = TS3-TS4, and defines a
confirmation message Confirm for accepting or
rejecting the connection. He signs the Confirm
together with TS4 and LifetimeB* into SigB*. Then,
he sends SigB* along with encoded message to
Node A.

IV. Finally, Node A verifies received message from
Node B and decrypts it. He ensures that LifetimeB*
= TS3-TS4 and the Confirm message is accept
confirmation to establish a connection.

4.4 Data Confidentiality Approach
Data confidentiality in our implementation is
achieved by encrypting every message exchanged in
every communication session by sender Node. On the
other hand, the encoded message is decrypted into
original message by recipient Node. This approach is
implemented both in key exchange and data
exchange phases. The detail of our implementation is
briefly described by the following steps of encryption
scheme for a message M.
I. Generate a one-time key pair (R, c) from the

global EC parameters and let R as a point on the
curve.

II. Pick the x component of K = c×B as a string X,
where B is the public key of recipient.

III. Generate a mask Y. This is the same number of
bytes as message M that uses the string X with the
Mask Generation Function (MGF).

IV. The final step is concatenation of the point R with
the encrypted message, whereas the encrypted
message is the result of XOR between the mask
and the message.

V. The process of message decryption to retrieve
original message is performed by generating the
mask and XOR with the encrypted message.

5. Experimental Results

In this section, we explain the experimental
results of our implementation. At first experiment, we
test the ECDSA and ECDH with elliptic curves over
Fp and CM method on Laptop PC with the
specifications: AMD Dual-Core processor 1.6GHz,
2GB RAM running on Ubuntu Linux kernel-2.6.35
with gcc-4.4 GNU C Compiler and GMP-5.0.5
Library.

Table 2. Comparisons of the total processing time in
RSA-based and ECC-based Digital Signature Algorithm

(DSA).

 RSA
ECC

RSA
ECC

RSA
ECC

RSA
ECC

Bit length 1024
160

1536
192

2048
224

3072
256

Signature
generation
time (ms)

1,182.93
6.81

3,663.65
8.19

7,076.35
11.45

17,223.12
13.87

Signature
verification
time (ms)

582.69
10.64

1,738.40
16.36

3,451.21
17.67

9,270.83
21.29

Table 2 shows the total time comparisons of

signature generation and verification between RSA-
based and ECC-based digital signature algorithm.
The total time of signature generation varies from 7
ms to 14 ms, and signature verification varies from
11 ms to 21 ms in ECC-based algorithm. Meanwhile,
the total time of signature generation varies from a
second to 17 seconds, and verification time varies
from 580 ms to 9 seconds in RSA-based one. Here,
the security level of 160-bit, 224-bit, and 256-bit
length in ECC equal to 1024-bit, 2048-bit, and 3072-
bit length in RSA, respectively. This implies that the
cost of computation time in elliptic curve technique is
much more efficient than in RSA-based one.

Table 3. Comparisons of signature size in RSA-based

DSA and ECDSA.
 RSA-DSA

ECDSA
RSA-DSA

ECDSA
RSA-DSA

ECDSA
RSA-DSA

ECDSA

Bit length 1024
160

1536
192

2048
224

3072
256

Signature
size (Bytes)

9,868
96

14,799
113

19,715
134

24,482
146

Figure 2. Total processing times on Intel Mote2.

We also compared the overhead of RSA-based

DSA and ECDSA algorithm in term of signature size.
The comparison of signature size is shown in Table
3. For the bit-length of security level from 160-bit to
256-bit in ECDSA, the signature size varies from 96
to 146 Bytes only. On the other hand, RSA-based
DSA suffers from a big size of signature. It varies
from 10 to 24Kbytes in the variety of security level

Communication and Network Systems, Technologies and Applications

 120

from 1024 to 3072 bit length. This good feature of
ECDSA can efficiently be implemented into low end
performance devices, such as embedded devices
including Intel Mote2.

Table 4. Total processing time of message encryption

and message decryption.
Bit length 160 192 224 256
Message encryption
time (ms) 1.605 1.608 1.610 1.607

Message decryption
time (ms) 1.098 1.103 1.101 1.099

Based on the reality that ECC is much more

efficient than RSA, we have ported ECDSA and
ECDH schemes into Intel Mote2 embedded device.
Figure 2 shows the total time of signature generation,
signature verification, and ECDH shared key
generation. We vary the bit length of cryptosystem
from 160-bit to 256-bit in our measurement. The total
processing time of signature generation varies from
110 ms to 152 ms. Whereas, the total time of
signature verification varies from 134 ms to 173 ms,
and total time of ECDH shared key generation is
relatively constant at 70 ms. In addition, our
approach to guarantee data confidentiality, we
implemented message encryption and message
decryption. Table 4 shows the total processing time
of message encryption and decryption algorithm. The
total time of encryption and decryption processes are
relatively constant for any bit-length of security level.
They are only 1.6 ms and 1.1 ms for message
encryption and decryption, respectively.

6. Security Issues
The proposed ECDH protocol is secure because
nothing is disclosed (except for the public keys), and
no node can derive the private key of the other nodes,
unless the Elliptic Curve Discrete Logarithm Problem
(ECDLP) was compromised. This is because all
nodes are only allowed to have public keys of other
nodes. All participant nodes hide their private keys
by embedding them into shared key KAB. Let consider
to the following equation:

KAB = dA×QB = dA×dB×G = dB×dA×G = dB×QA (6)

We introduced the use of timestamps and packet
lifetime in every session of communication or
transaction between two nodes, and the use of
random nonce to prevent a kind of reply attacks by
un-authorized nodes. This protocol security is also
supported by the use of digital signatures to provide a
mechanism of mutual authentication scheme. We also
encrypted every message exchanged in every
communication session to guarantee the data
confidentiality.

7. Conclusion
In this paper we have presented an

implementation of elliptic curve digital signature and
key agreement on an IEEE802.15.4 WSN device.
The experimental results show the practicality of our
secure WSN system. The total time of signature
generation, verification, and ECDH shared key
generation consume low cost of computation time.
They only consume computation time within 500 ms
with the overhead of signature size within 200 Bytes.
Our future works include the implementation of
secure data exchange over WSN between nodes and
between nodes and the gateway; and the
consideration of multi-hops communications among
nodes over WSN.

References
[1] E. Konstantinou, Y. C. Stamatiou, and C. Zaroliagis,

“Efficient Generation of Secure Elliptic Curves”,
International Journal of Information Security, Springer-
Verlag, pp. 47-62, 2006.

[2] D. J. Malan, M. Welsh, and M. D. Smith, “A Public-key
Infrastructure for Key Distribution in TinyOS Based on
Elliptic Curve Cryptography”, International Conference
on Sensor and Ad Hoc Communications and Networks,
pp. 71-80, 2004.

[3] N. Constantinescu, “Authentication Protocol Based on
Elliptic Curve Cryptography”, Annals of the University
of Craiova, Mathematics and Computer Science Series,
Volume 37(2), pp. 83-91, 2010.

[4] A. Liu and P. Ning, “TinyECC: A Configurable Library
for Elliptic Curve Cryptography in Wireless Sensor
Networks”, International Conference on Information
Processing in Sensor Networks, pp. 245-256, 2008.

[5] L. Batina, N. Mentens, K. Sakiyama, B. Preneel, and I.
Verbauwhede, “Low-Cost Elliptic Curve Cryptography
for Wireless Sensor Networks”, Proceedings of the
Third European conference on Security and Privacy in
Ad-Hoc and Sensor Networks, Springer-Verlag Berlin,
Heidelberg, pp. 6-17, 2006.

[6] X. Huang, D. Sharma, M. Aseeri, and S. Almorqi,
“Secure Wireless Sensor Networks with Dynamic
Window for Elliptic Curve Cryptography”, Electronics,
Communications and Photonics Conference (SIECPC),
2011 Saudi International, pp. 1-5, 2011.

[7] I. Blake, G. Seroussi, and N. Smart, “Elliptic Curves in
Cryptography”, London Mathematical Society Lecture
Note Series 265. Cambridge University Press, 1999.

[8] http://www.ceid.upatras.gr/faculty/zaro/software/ecc-
lib/ – ECC-LIB Library [Accessed: July 16, 2012].

[9] http://www.gmp.org – GNU Multiple Precision
(GNUMP) Library [Accessed: July 16, 2012].

[10] http://ubi.cs.washington.edu/wiki/index.php/IMote2 –
Intel Mote2 documentation [Accessed: July 18, 2012]

.

